The first Cp^{*} Os half-sandwich complexes containing chalcogenido ligands ${ }^{1}$

Max Herberhold ${ }^{\text {a, }}$, Guo-Xin Jin ${ }^{\text {a }}$, Louise M. Liable-Sands ${ }^{\text {b }}$, Arnold L. Rheingold ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 1012 51, D-95440 Bayreuth, Germany
${ }^{\text {b }}$ Department of Chemistry, University of Delaware, Newark, DE 19716, USA

Recerved 27 December 1995

Abstract

The reactions of the pentamethylcyclopentadienyl-osmium compound $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO}) \mathrm{Br}_{2}$ (1) with $\mathrm{Na}_{2} \mathrm{~S}_{4}$ and $\left(\mathrm{NEt}_{4}\right)_{2} \mathrm{Se}_{6}$ in dimethylformamide solution lead to mononuclear tetrachalcogenido complexes $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{E}_{4}\right)(\mathrm{E}=\mathrm{S}(\mathbf{2 a}), \mathrm{Se}(\mathbf{2 b})$), whereas binuclear products $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{E})_{2}(\mathrm{E}=\mathrm{S}(3 \mathrm{a}), \mathrm{Se}(3 \mathrm{~b}), \mathrm{Te}(3 \mathrm{c}))$ are obtained from the reactions of 1 with $\mathrm{Li}_{2} \mathrm{E}$ in tetrahydrofuran solution. Dechalcogenation of $\mathbf{2 a}, \mathbf{b}$ using tri(n-butyl)phosphane gives 3a,b. The molecular geometry of $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)(\mathbf{2 b})$ has been determined by an X-ray crystal structure analysis which confirms the presence of a non-planar cyclotetraselenido chelate ligand.

Keywords: Osmium; Sulfur; Selenium; Tellurium; Pentamethylcyclopentadienyl half-sandwich compounds; Chalcogenide complexes; Crystal structure

1. Introduction

Owing to their thermal stability and solubility in organic solvents, the mononuclear pentamethylcyclopentadienyl ($\mathrm{Cp} * \mathrm{M}$) half-sandwich compounds of the third-row transition metals ($\mathrm{M}=\mathrm{W}, \mathrm{Re}, \mathrm{Ir}$) have been used extensively as models for reactivity studies. Typical complexes containing oligochalcogenido chelate ligands $\left(E_{n}\right)$ are presented in Table 1.

Comparable Cp * Os complexes were so far unknown. We now report the synthesis of the mononuclear tetrachalcogenides $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{E}_{4}\right)(\mathrm{E}=\mathrm{S}(\mathbf{2 a})$, $\mathrm{Se}(\mathbf{2 b})$) and their facile dechalcogenation to the binuclear chalcogen-bridged derivatives $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-$ $E)_{2}(E=S(3 a), S e(3 b))$.

2. Results and discussion

A suitable educt for our $\mathrm{Cp}{ }^{*} \mathrm{Os}$ complexes is $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2} \mathrm{Br}_{2}(\mu-\mathrm{Br})_{2}$, recently described by Girolami and coworkers [13]. Treatment of this compound with either

[^0]NO gas or "diazald" ($4-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{SO}_{2} \mathrm{~N}$ (NO) Me) gave the violet nitrosyl complex $\mathrm{Cp}^{*} \mathrm{Os}$ (NO) Br_{2} (1), which was reacted with anionic oligochalcogenide sources such as $\mathrm{Na}_{2} \mathrm{~S}_{4},\left(\mathrm{NEt}_{4}\right)_{2} \mathrm{Se}_{6}$ [14] and ($\left.\mathrm{N}^{\mathrm{n}} \mathrm{Bu}_{4}\right)_{2} \mathrm{Te}_{5}$ [15] in warm dimethylformamide (DMF) solution (Scheme 1).

Whereas the mononuclear tetrachalcogenides $\mathrm{Cp}{ }^{*} \operatorname{Os}(\mathrm{NO})\left(\mathrm{E}_{4}\right)(\mathrm{E}=\mathrm{S}(\mathbf{2 a})$, $\mathrm{Se}(\mathbf{2 b}))$ could be easily obtained, only the binuclear product $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-$ $E)_{2}(E=T e(3 c))$ was isolated from the reaction of 1 with an excess of the pentatelluride $\left(\mathrm{N}^{\mathrm{n}} \mathrm{Bu}_{4}\right)_{2} \mathrm{Te}_{5}$ in DMF solution. The binuclear complexes 3a-c are best prepared, however, by treating 1 with a limited amount of monochalcogenide, $\mathrm{Li}_{2} \mathrm{E}$, in THF solution. The silyl-substituted chalcogenanes $\mathrm{E}\left(\mathrm{SiMe}_{2} \mathrm{R}\right)_{2}(\mathrm{E}=\mathrm{S}, \mathrm{Se}$, $\mathrm{R}=\mathrm{Me} ; \mathrm{E}=\mathrm{Te}, \mathrm{R}={ }^{\prime} \mathrm{Bu}$) have also been successfully used as precursors of the monochalcogenide bridges in 3a-c.

The mononuclear complexes $\mathbf{2 a}, \mathbf{b}$ and their binuclear counterparts 3a,b can be interconverted (Scheme 1). Elimination of chalcogen from 2a,b takes place in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution in the presence of tri(n-butyl)phosphane ($\mathrm{P}^{\mathrm{n}} \mathrm{Bu}_{3}$) to give $\mathrm{EP}^{\mathrm{n}} \mathrm{Bu}_{3}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$. In contrast, compounds 3a,b take up chalcogen from the oligochailcogenide salts $\mathrm{Na}_{2} \mathrm{~S}_{4}$ and $\left(\mathrm{NEt}_{4}\right)_{2} \mathrm{Se}_{6}$ respectively to reform the mononuclear compounds $\mathbf{2 a , b}$. The incor-

Table 1
Mononuclear pentamethylcyclopentadienyl ($\mathrm{Cp} * \mathrm{M}$) half-sandwich complexes of tungsten, rhenium, osmium and irdium contanning oligochalcogenido ligands

Cp ${ }^{*}$ W	$\mathrm{Cp}{ }^{\text {Pre }}$	$\mathrm{Cp}{ }^{*} \mathrm{Os}$	$\mathrm{Cp}{ }^{\text { }}$ Ir
$\mathrm{Cp}^{*} \mathrm{~W}(\mathrm{~L})(\mathrm{X})\left(\mathrm{E}_{2}\right)$	$\mathrm{Cp}{ }^{*} \operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{E}_{2}\right)$		$\left.\mathrm{Cp}{ }^{*} \mathrm{Ir}\left(\mathrm{PMe}_{3}\right) \mathrm{EE}_{2}\right)$
$\mathrm{L}=\mathrm{O} ; \mathrm{E}=\mathrm{S}$	$\mathrm{E}=\mathrm{S}[6], \mathrm{Se}$		$\mathrm{E}=\mathrm{Se}[11], \mathrm{Te}$
$\mathrm{X}=\mathrm{Me}$ [1]. [[2], Cl, OMe [3]			
$\mathrm{L}=\mathrm{S} ; \mathrm{E}=\mathrm{S}$	$\mathrm{Cp}{ }^{*} \mathrm{ReCl}_{2}\left(\mathrm{E}_{3}\right)$		
$\mathrm{X}=\mathrm{Me}$ [1], I [2], $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ [1], $\mathrm{Cl}, \mathrm{OMe}$ [3]	$\mathrm{E}=\mathrm{S}, \mathrm{Se}[7]$		
$\left.\begin{array}{l}\mathrm{L}=\mathrm{N}^{\text {cibu}} ; \mathrm{E}=\mathrm{S}, \mathrm{Se} \\ \mathrm{X}=\mathrm{Cl}[4]\end{array} \quad \mathrm{Cp} \mathrm{Re(S}_{3}\right)\left(\mathrm{S}_{4}\right)[8]$			
	$\mathrm{Cp}{ }^{*} \operatorname{Re}(\mathrm{~L})\left(\mathrm{E}_{4}\right)$	$\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{E}_{4}\right)^{\text {a }}$	$\mathrm{Cp} * \operatorname{Ir}(\mathrm{CO})\left(\mathrm{S}_{4}\right)[12]$
	$\mathrm{L}=\mathrm{O}, \mathrm{E}=\mathrm{S}[7-10]$, Se [7,9]	$\mathrm{E}=\mathrm{S}, \mathrm{Se}$	$\mathrm{Cp}{ }^{*} \mathrm{Ir}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{E}_{4}\right)$
	$\mathrm{L}=\mathrm{N}^{\mathrm{t}} \mathrm{Bu}: \mathrm{E}=\mathrm{S}, \mathrm{Se}$ [7]		$\mathrm{E}=\mathrm{S}, \mathrm{Se}[11]$
$\mathrm{Cp}{ }^{+} \mathrm{W}(\mathrm{NO})\left(\mathrm{E}_{5}\right)$			$\mathrm{Cp}^{*} \mathrm{Ir}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{E}_{n}\right)$
E = S, Se [5]			$\mathrm{E}_{n}=\mathrm{S}_{5}, \mathrm{~S}_{6}[11]$

${ }^{2}$ Present work.
poration of sulfur and selenium into $\mathbf{3 a}, \mathbf{b}$ from the elements proceeds considerably more slowly.

The spectroscopic data of the new complexes $\mathbf{1 , 2 a , b}$ and 3a-c are summarized in Table 2. The nitrosyl stretching frequency $\nu(\mathrm{NO})$ increases if the chalcogen is varied in a given complex type in the order $\mathrm{S}<\mathrm{Se}<\mathrm{Te}$, indicating that the heavier chalcogens are better acceptor ligands than sulfur. The EI mass spectra consistently contain the molecular ion; the most prominent fragment ions are $\mathrm{Cp}{ }^{*} \mathrm{OsE}_{2}{ }^{+}$in the case of $\mathbf{2 a}, \mathbf{b}$ and $\mathrm{Cp}_{2}{ }^{*} \mathrm{Os}_{2} \mathrm{E}_{2}{ }^{+}$ in the case of $\mathbf{3 a - c}$. The molecular geometry of $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)$ (2b) has been determined by a single-crystal X-ray structure analysis. The proposed molecular structure of the binuclear compounds is consistent with all available spectroscopic data and is also supported by an X-ray structure analysis of $\mathrm{Cp}_{2}^{*} \mathrm{Ru}_{2}$ $(\mathrm{NO})_{2}(\mu-\mathrm{Te})_{2}[16]$, which is analogous to 3 c .

2.1. Molecular structure of $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)(2 b)$

The asymmetric unit of the triclinic cell $(Z=4)$ contains two symmetry-independent but chemically equivalent molecules, A and B. As an example, Fig. 1 presents the geometry of one $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)$ molecule ($\mathbf{2 b} \mathbf{b}-\mathrm{A}$) with the numbering system. Table 3 gives selected intramolecular distances and angles for both

Scheme 1 .
molecules, $\mathbf{2 b}-\mathrm{A}$ and $\mathbf{2 b}-\mathbf{B}$. The molecular dimensions are similar in A and B, although the atoms of the $C p$ * ligand have large vibrational ellipsoids and the standard deviations of all distances and angles related to the Cp * rings are relatively high (Table 4).

Complex $\mathbf{2 b}$ possesses basically a trilegged halfsandwich $\mathrm{Cp}{ }^{*}$ Os structure. The five-membered metallacycle OsSe_{4} has a distorted envelope conformation similar to the MSe_{4} rings found in $\mathrm{Cp}^{*} \operatorname{Re}(\mathrm{O})\left(\mathrm{Se}_{4}\right)$ [7], $\mathrm{Cp}{ }^{*} \operatorname{Re}\left(\mathrm{~N}^{t} \mathrm{Bu}\right)\left(\mathrm{Se}_{4}\right)[7]$ and $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{Se}_{4}\right)$ [11]. The bite angle of the cyclotetraselenido chelate ligand ($\mathrm{Se}-$ Os $\left.-\operatorname{Se} 94.6(1)^{\circ}\right)$ is in the range $94-97^{\circ}$, which is typical for half-sandwich $\mathrm{Cp}{ }^{*} \mathrm{M}\left(\mathrm{Se}_{4}\right)$ compounds [7,11]. The nitrosyl ligand deviates slightly from linearity with Os-$\mathrm{N}-\mathrm{O}$ angles of $170.4(18)^{\circ}(\mathrm{A})$ and $173.4(24)^{\circ}(\mathrm{B})$.

3. Experimental details

3.1. Syntheses

3.1.1. $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO}) \mathrm{Br}_{2}$ (1)

NO gas was bubbled through a suspension of 1 g $(1.03 \mathrm{mmol})$ [$\left.\mathrm{Cp}{ }^{*} \mathrm{OsBr}_{2}\right]_{2}$ [13] in 80 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min . The violet solution was then stirred under NO atmosphere for 2 h at room temperature. The solvent was removed in vacuo, and the residue separated by column chromatography on silica (Merck, Kieselgel

Table 2
Spectroscopic characterization

Complex	$\begin{aligned} & \mathrm{IR}^{\mathbf{a}} \\ & \nu(\mathrm{NO}) \end{aligned}$	${ }^{1} \mathrm{HNMR}^{\text {b }}{ }^{13} \mathrm{CNMR}{ }^{\text {b }}$		
) $8\left(\mathrm{CH}_{3}\right)$	$\delta\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$	$\delta\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$
$\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO}) \mathrm{Br}_{2}(\mathbf{1})$	1765	2.04	10.2	105.4
$\mathrm{Cp}{ }^{*} \mathrm{Os}\left(\mathrm{NO}^{(1)}\left(\mathrm{S}_{4}\right)(2 \mathrm{a})\right.$	1724	2.05	9.9	105.7
$\mathrm{Cp}{ }^{*} \mathrm{Os}\left(\mathrm{NO}^{(}\right)\left(\mathrm{Se}_{4}\right)(2 \mathrm{~b})$	1740	2.10	10.6	104.6
$\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{S})_{2}$ (3a)	1676	2.04	10.3	105.5
$\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{Se})_{2}(3 \mathrm{~b})$	1685	1.99	9.9	102.8
$\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{Te})_{2}(3 \mathrm{c})$	1707	2.13	10.9	99.7

Fig. 1. Geometry of $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)$ molecule $2 \mathrm{~b}-\mathrm{A}$ with atom numbering scheme.
60). Elution with neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ developed a violet zone, and recrystallization from CHCl_{3} /hexane at $-25^{\circ} \mathrm{C}$ gave $0.85 \mathrm{~g}(80 \%)$ violet crystals of $\mathbf{1}$, no decomp. up to $250^{\circ} \mathrm{C}$. EI-MS (70 eV): $m / e 515\left(\mathrm{M}^{+}, 36 \%\right), 485$ ($\mathrm{M}^{+}-\mathrm{NO}, 17 \%$), $436\left(\mathrm{M}^{+}-\mathrm{HBr}, 35 \%\right), 405$ ($\mathrm{Cp}^{*} \mathrm{OsBr}^{+}, 100 \%$).

3.1.2. $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO})\left(E_{4}\right)(E=S(2 a), \mathrm{Se}(2 b))$

A solution of $0.30 \mathrm{~g}(0.58 \mathrm{mmol}) 1$ and $0.17 \mathrm{~g}(0.98$ $\mathrm{mmol}) \mathrm{Na}_{2} \mathrm{~S}_{4}$ in 20 ml of DMF was stirred at $70-80^{\circ} \mathrm{C}$ for 3 h . After removal of the solvent the crude product 2a was purified by column chromatography on silica (using neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for elution). Recrystallization from

Table 3
Selected interatomic distances [pm] and angles [${ }^{\circ}$] in $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)$ (2b)

Molecule A		Molecule B	
Distances			
Os-Se(1)	246.7(3)	Os'-Se(1^{\prime})	247.1(3)
$\mathrm{Os}-\mathrm{Se}(4)$	247.1(3)	Os ${ }^{\prime}-\mathrm{Se}\left(4^{\prime}\right)$	247.1(3)
$\mathrm{Os}-\mathrm{N}$	173.7(21)	$0 s^{\prime}-\mathrm{N}^{\prime}$	174.8(20)
$\mathrm{N}-\mathrm{O}$	$119.3(30)$	$\mathrm{N}^{\prime}-\mathrm{O}^{\prime}$	116.8(26)
Os-centre Cp*	193.0	Os'-centre Cp**	192.5
$\mathrm{Se}(1)-\mathrm{Se}(2)$	237.2(5)	$\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)$	234.5(4)
$\mathrm{Se}(2)-\mathrm{Se}(3)$	229.6(4)	$\operatorname{Se}\left(2^{\prime}\right)-\operatorname{Se}\left(3^{\prime}\right)$	230.9(6)
$\mathrm{Se}(3)-\mathrm{Se}(4)$	234.5(4)	$\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)$	235.0(5)
Angles			
$\mathrm{Se}(1)-\mathrm{Os}-\mathrm{Se}(4)$	94.6(1)	$\mathrm{Se}\left(\mathrm{l}^{\prime}\right)-\mathrm{Os}^{\prime}-\mathrm{Se}\left(4^{\prime}\right)$	94.5(1)
$\mathrm{Se}(1)-\mathrm{Os}-\mathrm{N}$	$99.2(6)$	$\mathrm{Se}\left(\mathrm{l}^{\prime}\right)-\mathrm{Os}^{\prime}-\mathrm{N}^{\prime}$	$96.9(8)$
$\mathrm{Se}(4)-\mathrm{Os}-\mathrm{N}$	95.1(6)	$\mathrm{Se}\left(4^{\prime}\right)-\mathrm{Os}^{\prime}-\mathrm{N}^{\prime}$	98.6 (8)
$\mathrm{Os}-\mathrm{N}-\mathrm{O}$	170.4(18)	Os ${ }^{\prime}-\mathrm{N}^{\prime}-\mathrm{O}^{\prime}$	173.4(24)
$\mathrm{Os}-\mathrm{Se}(1)-\mathrm{Se}(2)$	108.3(1)	Os ${ }^{\prime}-\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)$	108.3(1)
Se (1)-Se(2)-Se(3)	$97.6(2)$	$\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)-\mathrm{Se}\left(3^{\prime}\right)$	97.2(1)
$\mathrm{Se}(2)-\mathrm{Se}(3)-\mathrm{Se}(4)$	96.3(4)	$\mathrm{Se}\left(2^{\prime}\right)-\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)$	96.7(2)
$\mathrm{Se}(3)-\mathrm{Se}(4)-\mathrm{Os}$	107.4(1)	$\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)-\mathrm{Os}^{\prime}$	107.8(1)
Torsion angles			
$\mathrm{Se}(4)-\mathrm{Os}-\mathrm{Se}(1)-\mathrm{Se}(2)$	13.0	$\mathrm{Se}\left(4^{\prime}\right)-\mathrm{Os}-\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)$	16.8
$\mathrm{Os}-\mathrm{Se}(1)-\mathrm{Se}(2)-\mathrm{Se}(3)$	-45.4	$\mathrm{Os}-\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)-\mathrm{Se}\left(3^{\prime}\right)$	-47.9
$\mathrm{Se}(1)-\mathrm{Se}(2)-\mathrm{Se}(3)-\mathrm{Se}(4)$	56.8	$\mathrm{Se}\left(1^{\prime}\right)-\mathrm{Se}\left(2^{\prime}\right)-\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)$	56.8
$\mathrm{Se}(2)-\mathrm{Se}(3)-\mathrm{Se}(4)-\mathrm{Os}$	- 52.7	$\mathrm{Se}\left(2^{\prime}\right)-\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)-\mathrm{Os}$	- 50.1
$\mathrm{Se}(3)-\mathrm{Se}(4)-\mathrm{Os}-\mathrm{Se}(1)$	23.6	$\mathrm{Se}\left(3^{\prime}\right)-\mathrm{Se}\left(4^{\prime}\right)-\mathrm{Os}-\mathrm{Se}\left(1^{\prime}\right)$	20.1

Table 4
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$)

Atom	x	y	z	$U_{\text {(eq) }}$
Os	4813(9)	12865.5(7)	$6156.3(7)$	32(1)
Os'	1655.5(9)	8768.6(8)	8906.1(7)	37(1)
Se(1)	2817(2)	13617(2)	$6263(2)$	51(1)
$\mathrm{Se}(2)$	$1604(3)$	12234(3)	6755(3)	73(2)
Se(3)	1723(2)	10301(2)	$5625(2)$	$52(1)$
$\mathrm{Se}(4)$	4042(3)	10769(2)	$6217(2)$	$56(1)$
$\mathrm{Se}\left(1^{\prime}\right)$	2792(3)	7027(2)	8984(2)	$56(1)$
$\mathrm{Se}\left(2^{\prime}\right)$	1178(4)	5070(2)	8255(3)	95(2)
$\mathrm{Se}\left(3^{\prime}\right)$	-160(3)	5805(3)	$9163(2)$	73(2)
$\mathrm{Se}\left(4^{\prime}\right)$	- 524(3)	$7492(3)$	$8607(2)$	$60(1)$
N	4373(16)	12244(16)	4801(15)	$40(9)$
\bigcirc	42.57(20)	11905(18)	3903(14)	80(11)
N^{\prime}	$2184(21)$	9647(18)	10263(16)	S5(11)
O^{\prime}	2585(20)	10336(17)	$11154(16)$	$78(11)$
C(1)	$6657(21)$	13180(19)	$7617(18)$	$36(11)$
C(2)	$6028(22)$	14131(19)	$7873(16)$	37(10)
C(3)	$6069(22)$	14913(18)	$7304(19)$	42(11)
C(4)	6646(21)	14348(18)	6583(18)	35(11)
C(5)	$7039(21)$	13245(20)	$6766(18)$	43(11)
C(6)	6986(24)	12257(20)	$8096(18)$	52(12)
C(7)	5525(27)	14458(20)	8797(19)	63(14)
C(8)	5595(23)	16118(18)	7416 (21)	60(13)
C(9)	6973(29)	14877(23)	5848(22)	84(17)
C(10)	7865(23)	12470(23)	6299(22)	76(15)
$\mathrm{C}\left(1^{\prime}\right)$	1597(49)	8372(27)	$7266(24)$	83(21)
$\mathrm{C}\left(2^{\prime}\right)$	2770(33)	9244(46)	$7975(38)$	100(29)
C(3)	$2440(26)$	$10359(23)$	8514(19)	52(13)
C(4)	1063(24)	$10149(21)$	8153(20)	43(13)
C(5)	$574(30)$	$8933(29)$	$7343(21)$	68(15)
C(6)	1524(77)	$7115(35)$	$6395(34)$	445(10.5)
C(7)	4206 (36)	9301(50)	8173(42)	288(76)
C(8)	3400(47)	11616 (33)	9384(29)	244(39)
$\mathrm{C}\left(9^{\prime}\right)$	397(46)	11147(34)	8511 (32)	168(40)
C(10')	$-778(36)$	8361(39)	6663(32)	204(35)

* Equivalent isotropic U defined as one thard of the trace of the orthogonalized $U_{i j}$ tensor.
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3} /$ hexane at $-25^{\circ} \mathrm{C}$ gave $0.19 \mathrm{~g}(67.3 \%)$ red crystals of 2 a . EI-MS: $m / e 485\left(\mathrm{M}^{+}, 38 \%\right), 455$ $\left(\mathrm{M}^{+}-\mathrm{NO}, 60 \%\right), 421\left(\mathrm{M}^{+}-2 \mathrm{~S}, 20 \%\right), 391\left(\mathrm{Cp}^{*} \mathrm{OsS}_{2}{ }^{+}\right.$, $100 \%), 357\left(\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO})^{+}, 60 \%\right)$.

An analogous procedure led to $\mathbf{2 b}$. Starting from 0.30 $\mathrm{g}(0.58 \mathrm{mmol}) 1$ and $0.80 \mathrm{~g}(1.09 \mathrm{mmol})\left(\mathrm{NEt}_{4}\right)_{2} \mathrm{Se}_{6}$ [14], product $2 \mathrm{~b}(0.22 \mathrm{~g}, 56.1 \%)$ was isolated as dark-red crystals, m.p. $224^{\circ} \mathrm{C}$. EI-MS: $m / e 673$ ($\mathrm{M}^{+}, 17 \%$), 643 $\left(\mathrm{M}^{+}-\mathrm{NO}, \quad 15 \%\right), 515\left(\mathrm{M}^{+}-2 \mathrm{Se}, 33 \%\right), 485$ ($\mathrm{Cp}^{*} \mathrm{OsSe}_{2}{ }^{+}, 100 \%$), $403\left(\mathrm{Cp}^{*} \mathrm{OsSe}^{+}, 18 \%\right)$, the most intense peak of the isotope pattern is listed.

3.1.3. $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-E)_{2}(E=\operatorname{Se}(3 a), \mathrm{Se}(3 b), \mathrm{Te}$ (3c))

Lithium chalcogenides $\mathrm{Li}_{2} \mathrm{E}$ were prepared by reaction of elemental chalcogen with $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right](1: 2)$ in THF solution. A mixture of ca. $0.80 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{E}$ and $0.30 \mathrm{~g}(0.58 \mathrm{mmol}) 1$ in 40 ml of TIIF was then stirred at room temperature for two to three days. The solvent

THF was evaporated, and the crude product chromatographed over silica. Neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used to elute complexes $\mathbf{3 a - c}$, which were finally recrystallized from either THF/hexane or toluene/hexane at $-25^{\circ} \mathrm{C}$ to give dark-red prismatic crystals (no decomp. up to $250^{\circ} \mathrm{C}$).
$\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{S})_{2}(3 \mathrm{a}, 0.14 \mathrm{~g}, 62.1 \%)$. IR: $\nu(\mathrm{Os}-$ SOs) $357 \mathrm{~cm}^{-1}$. EI-MS: $m / e 774\left(\mathrm{M}^{+}, 2 \%\right), 744\left(\mathrm{M}^{+}-\right.$ $\mathrm{NO}, 2 \%), 714\left(\mathrm{M}^{+}-2 \mathrm{NO}, 100 \%\right), 580\left(\mathrm{M}^{+}-2 \mathrm{NO}-\mathrm{Cp}^{*}\right.$, 40%), $\left.357(\mathrm{M}-2 \mathrm{NO})^{2+}, 36 \%\right)$.
$\mathrm{Cp}_{2}{ }^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{Se})_{2}(3 \mathrm{~b}, \quad 0.16 \mathrm{~g}, 63.3 \%)$. IR: $\nu(\mathrm{OsSeOs}) 367 \mathrm{~cm}^{-1}$. EI-MS: $m / e 870\left(\mathrm{M}^{+}, 20 \%\right)$, $840\left(\mathrm{M}^{+}-\mathrm{NO}, 8 \%\right), 810 / 808\left(\mathrm{M}^{+}-2 \mathrm{NO}, 90 / 100 \%\right)$, $790\left(\mathrm{M}^{+}-\mathrm{Se}, 14 \%\right), 405\left((\mathrm{M}-2 \mathrm{NO})^{2+}, 59 \%\right)$.
$\mathrm{Cp}_{2} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-\mathrm{Te})_{2}(3 \mathrm{c}, 0.20 \mathrm{~g}, 71.2 \%)$. EI-MS: $m / e 968\left(\mathrm{M}^{+}, 46 \%\right), 938\left(\mathrm{M}^{+}-\mathrm{NO}, 7 \%\right), 908\left(\mathrm{M}^{+}-\right.$ $2 \mathrm{NO}, 100 \%), 454\left((\mathrm{M}-2 \mathrm{NO})^{2+}, 80 \%\right)$. Anal. Found: C, 25.11; H, 3.32; Os, 39.6; Te, 26.6. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Os}_{2} \mathrm{Te}_{2}$ (966.07) Calc.: C, 24.87; H, 3.13; Os, $39.38 ; \mathrm{Te}$, 26.42%.

3.2. Chalcogen elimination and insertion reactions

3.2.1. Dechalcogenation of $\mathrm{Cp}{ }^{*} \mathrm{Os}(\mathrm{NO})\left(E_{4}\right)(2 a, b)$

A solution of 2a ($0.20 \mathrm{~g}, 0.41 \mathrm{mmol}$) and tri(nbutyl)phosphane ($0.29 \mathrm{~g}, 1.44 \mathrm{mmol}$) in 40 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 1 h at ambient temperature. The solvent was then evaporated and the residue separated by column chromatography over silica. Elution with neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an oily mixture of $\mathbf{3 a}$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{PS}$. The mixture was treated with toluene/hexane ($1: 2$) and the crude product 3 a recrystallized from THF/hexane. Yield $0.07 \mathrm{~g}, 40.3 \%$, dark-red crystals.

An analogous reaction of $\mathbf{2 b}$ ($0.24 \mathrm{~g}, 0.36 \mathrm{mmol}$) with excess $\mathrm{P}^{\mathrm{n}} \mathrm{Bu}_{3}(0.24 \mathrm{~g}, 1.26 \mathrm{mmol})$ afforded 0.09 g (57.7%) dark-red crystals of $\mathbf{3 b}$.

3.2.2. Chalcogenation of $\mathrm{Cp}_{2}^{*} \mathrm{Os}_{2}(\mathrm{NO})_{2}(\mu-E)_{2}(3 a, b)$

A solution containing $3 \mathrm{a}(0.12 \mathrm{~g}, 0.16 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{~S}_{4}(0.08 \mathrm{~g}, 0.47 \mathrm{mmol})$ in 20 ml DMF was stirred at $70^{\circ} \mathrm{C}$ for 90 min . After evaporation of the solvent, the residue was chromatographed on silica and the product $2 \mathrm{a}(0.10 \mathrm{~g}, 66.7 \%)$ eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The corresponding reaction of $\mathbf{3 b}(0.14 \mathrm{~g}, 0.16 \mathrm{mmol})$ with excess $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{Se}_{6}(0.30 \mathrm{~g}, 0.40 \mathrm{mmol})$ in 30 ml DMF at $80^{\circ} \mathrm{C}$ gave $0.15 \mathrm{~g}(69.1 \%) \mathbf{3 b}$ as dark-red crystals.

3.3. Crystal structure determination of $\mathrm{Cp}^{*} \mathrm{Os}(\mathrm{NO})\left(\mathrm{Se}_{4}\right)$ (2b) 117$]$

A dark-red crystal $\left(0.05 \times 0.23 \times 0.25 \mathrm{~mm}^{3}\right)$ was mounted with epoxy cement on a thin glass fiber. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NOOsSe}_{4}$ (671.3), triclinic, space group $P \overline{1}$; $a-1095.6$ (3) $, b=1134.9(4), c=1459.1(6) \mathrm{pm} ; \alpha=$ $109.99(3), \beta=108.05(3), \gamma=96.66(2)^{\circ} ; \quad V=1570(1)$
$\times 10^{6} \mathrm{pm}^{3} ; Z=4 . D_{\text {calc. }}=2.839 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu(\operatorname{MoK} \alpha)$ $=17.376 \mathrm{~mm}^{-1} ; 296 \mathrm{~K}$.

Data collection: Siemens P4, graphite monochromator, MoK α radiation ($\lambda=71.073 \mathrm{pm}$), 2θ scan range $4.0-43.0^{\circ}$. Collected reflections 3401 , independent reflections 3231, independent observed reflections [$F_{0} \geq$ $\left.5 \sigma\left(F_{\mathrm{o}}\right)\right] 2056$.

Solution and refinement: dircct methods, completed by subsequent difference Fourier syntheses and refined by full-matrix least-squares procedures; semi-empirical laminar absorption correction, all data with a glancing angle of not more than 3° to the prominent face [001] were rejected, affecting 347 reflections. Siemens SHELXTL PLUS (4.2) program libraries, $R(F)=3.82 \%$, $R(w F)=4.50 \%, \Delta / \sigma(\max)=0.034 ; \Delta(\rho)=1.43 \times$ $10^{-6} \mathrm{e} \mathrm{pm}^{-3}, N_{\mathrm{o}} / N_{\mathrm{v}}=6.7$; GOF 1.03 .

All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were treated as idealized contributions. Table 4 contains atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients.

Acknowledgements

We thank Dr. W. Milius, Bayreuth, for valuable discussions on molecular structures. Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We particularly thank Degussa AG, Hanau, for a loan of osmium tetroxide.

References and notes

[1] J.W. Faller, R.R. Kucharczyk and Y. Ma, Inorg. Chem., 29 (1990) 1662.
[2] M. Herberhold, G.-X. Jin and A.L. Rheingold, Z. Naturforsch., $48 b$ (1993) 1488.
[3] M. Herberhold, G.-X. Jin and W. Milius, in preparation.
[4] J. Sundermeyer, personal communication, 1994.
[5] M. Herberhold, G.-X. Jin, W. Kremnitz, A.L. Rheingold and B.S. Haggerty, Z. Naturforsch., $46 b$ (1991) 500.
[6] M. Herberhold and B. Schmidkonz, J. Organomet. Chem., 308 (1986) 35; 358 (1988) 301.
[7] M. Herberhold, G.-X. Jin and W. Milus, Z. Anorg. Allg. Chem., 620 (1994) 299.
[8] M. Herberhold, G.-X. Jin and W. Milius, Angew. Chem., 105 (1993) 127; Angew. Chem., Int. Ed. Engl., 32 (1993) 85.
[9] M. Herberhold, G.-X. Jin and W. Milius, J. Organomet. Chem., 459 (1993) 257.
[10] J. Kulpe, E. Herdtweck, G. Weichselbaumer and W.A. Herrmann, J. Organomet. Chem., 348 (1988) 369.
[11] M. Herberhold, G.-X. Jin and A.L. Rheingold, Chem. Ber., I24 (1991 2245.
[12] M. Herberhold, G.-X. Jin and W. Milius, Chem. Ber., I28 (1995) 557.
[13] C.L. Gross, S.R. Wilson and G.S. Girolami, J. Am. Chem. Soc., 116 (1994) 10294.
[14] F. Weller, J. Adel and K. Déhnicke, Z. Anorg. Allg. Chem., 548 (1987) 125.
[15] R.G. Teller, L.J. Kraus and R.T. Haushalter, Inorg. Chem., 22 (1983) 1809.
[16] W. Milius, personal communication, 1995.
[17] Further details of the crystal structure investıgation are available on request from the Fachinformationszentrum Karlsruhe, D76344 Eggenstem-Leopoldshafen, on quoting the depository number CSD-59259, the names of the authors and the journal citation.

[^0]: * Corresponding authors.
 ${ }^{1}$ Dedicated to Professor Rudolf Taube on the occasion of his 65th birthday.

